Daca f are o primitiva neinjectiva, atunci se anuleaza

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Daca f are o primitiva neinjectiva, atunci se anuleaza

Post by Cezar Lupu »

Sa se arate ca daca \( f:\mathbb{R}\to\mathbb{R} \) admite o primitiva neinjectiva, atunci \( f \) se anuleaza in cel putin un punct.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Alex Dura
Site Admin
Posts: 25
Joined: Tue Sep 25, 2007 9:18 pm
Location: Timisoara

Post by Alex Dura »

Fie \( F:\mathbb{R} \rightarrow \mathbb{R} \) o primitiva a lui \( f \). Cum \( F \) este neinjectiva rezultca ca exista \( a,b \in \mathbb{R} \) cu \( F(a)=F(b) \). Aplicam teorema lui Rolle pe \( [a,b] \) si obtinem ca \( \exists c\in (a,b) : F^{,}(c)=f(c)=0. \)
Post Reply

Return to “Analiza matematica”