Fie \( x, y \in \mathbb{C} \) cu proprietatea ca \( \forall n \) natural nenul, \( |x^n - y^n| = 1 \). Sa se arate ca \( xy = 0 \).
Dinu Serbanescu
[ OLM 2008 Bucuresti, Problema 2 ]
Siruri de numere complexe
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Siruri de numere complexe
Life is complex: it has real and imaginary components.
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Intr-adevar, pentru \( n = 1,\ 2 \), \( 1 = |x - y| \), \( 1 = |x^2 - y^2| = |x - y| \cdot |x + y| = |x + y| \).
Din "identitatea paralelogramului" (utilizati \( |z|^2 = z\overline{z} \)),
\( 2(|x|^2 + |y|^2) = |x - y|^2 + |x + y|^2 = 2 \), \( |x|^2 + |y|^2 = 1 \).
Daca \( \{|x|, |y|\} = \{0, 1\} \), \( xy = 0 \) (si reciproc, evident, \( |x^n - y^n| = 1 \), \( n \ge 1 \)).
Altfel, \( |x|, |y| < 1 \), deci \( |x^n| = |x|^n \to 0 \), \( |y^n| = |y|^n \to 0 \), deci \( x^n, y^n, x^n - y^n \to 0 \), \( 1 = |x^n - y^n| \to 0 \), o contradictie.
Din "identitatea paralelogramului" (utilizati \( |z|^2 = z\overline{z} \)),
\( 2(|x|^2 + |y|^2) = |x - y|^2 + |x + y|^2 = 2 \), \( |x|^2 + |y|^2 = 1 \).
Daca \( \{|x|, |y|\} = \{0, 1\} \), \( xy = 0 \) (si reciproc, evident, \( |x^n - y^n| = 1 \), \( n \ge 1 \)).
Altfel, \( |x|, |y| < 1 \), deci \( |x^n| = |x|^n \to 0 \), \( |y^n| = |y|^n \to 0 \), deci \( x^n, y^n, x^n - y^n \to 0 \), \( 1 = |x^n - y^n| \to 0 \), o contradictie.
Last edited by Filip Chindea on Sun Feb 15, 2009 10:03 am, edited 2 times in total.
Life is complex: it has real and imaginary components.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Presupunem \( x\neq 0 \).
Avem \( |x^2-y^2|=1 \), de unde \( |x-y|=|x+y|=1 \), deci patrulaterul \( OXYZ \), unde O este originea, \( X(x),\ Y(y),\ Z(x+y) \) care oricum este un paralelogram, are diagonalele egale. Deci este dreptunghi. Atunci \( \frac{y}{x} \in i\mathbb{R} \). \( (1) \)
Avem \( |x^4-y^4|=1 \), de unde \( |x^2-y^2|=|x^2+y^2|=1 \). Deci si patrulaterul format cu originea si punctele de afixe \( x^2,y^2,x^2+y^2 \) este tot dreptunghi. Atunci \( \frac{y^2}{x^2} \in i\mathbb{R} \). \( (2) \)
Dar din (1) \( \frac{y^2}{x^2} \in \mathbb{R} \).
Din (1) si (2) rezulta ca \( \frac{y^2}{x^2}\in \mathbb{R} \cap i\mathbb{R}=\{0\} \). Deci \( y=0 \).
Am folosit doar relatiile pentru \( n=1, 2, 4 \).
Avem \( |x^2-y^2|=1 \), de unde \( |x-y|=|x+y|=1 \), deci patrulaterul \( OXYZ \), unde O este originea, \( X(x),\ Y(y),\ Z(x+y) \) care oricum este un paralelogram, are diagonalele egale. Deci este dreptunghi. Atunci \( \frac{y}{x} \in i\mathbb{R} \). \( (1) \)
Avem \( |x^4-y^4|=1 \), de unde \( |x^2-y^2|=|x^2+y^2|=1 \). Deci si patrulaterul format cu originea si punctele de afixe \( x^2,y^2,x^2+y^2 \) este tot dreptunghi. Atunci \( \frac{y^2}{x^2} \in i\mathbb{R} \). \( (2) \)
Dar din (1) \( \frac{y^2}{x^2} \in \mathbb{R} \).
Din (1) si (2) rezulta ca \( \frac{y^2}{x^2}\in \mathbb{R} \cap i\mathbb{R}=\{0\} \). Deci \( y=0 \).
Am folosit doar relatiile pentru \( n=1, 2, 4 \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
-
andy crisan
- Pitagora
- Posts: 56
- Joined: Sun Dec 28, 2008 5:50 pm
- Location: Pitesti
O solutie algebrica
Pt. \( n=1 \) obtinem \( |x-y|=1 \)
Pt. \( n=2 \) obtinem \( |x^{2}-y^{2}|=1 \)\( \Leftrightarrow |x-y|\cdot |x+y|=1 \Leftrightarrow |x+y|=1 \)
Obtinem sistemul \( \left {\\|x+y|=1\\|x-y|=1 \) si vom obtine ca \( |x^{2}|+|y^{2}|=1 \). \( (1) \)
Pe de alta parte pentru \( n=4 \) obtinem \( |x^{4}-y^{4}|=1 \Leftrightarrow |x^{2}-y^{2}|\cdot |x^{2}+y^{2}|=1\Rightarrow |x^{2}+y^{2}|=1 \). \( (2) \)
Din (1) si (2) rezulta \( |x^{2}|+|y^{2}|=|x^{2}+y^{2}|\Rightarrow (\exists) \alpha>0 \) astfel incat \( \alpha x^{2}=y^{2} \) si cum
\( |x^{2}-y^{2}|=|x^{2}+y^{2}|\Leftrightarrow |x^{2}|\cdot |1-\alpha|=|x^{2}|\cdot |1+\alpha|\Leftrightarrow |x^{2}|\cdot (|1-\alpha|-|1+\alpha|)=0\Rightarrow x=0 \) sau \( |1-\alpha|=|1+\alpha| \) ultima egalitatea nu poate avea loc caci \( \alpha >0 \)\( \Rightarrow x=0 \).
Pt. \( n=1 \) obtinem \( |x-y|=1 \)
Pt. \( n=2 \) obtinem \( |x^{2}-y^{2}|=1 \)\( \Leftrightarrow |x-y|\cdot |x+y|=1 \Leftrightarrow |x+y|=1 \)
Obtinem sistemul \( \left {\\|x+y|=1\\|x-y|=1 \) si vom obtine ca \( |x^{2}|+|y^{2}|=1 \). \( (1) \)
Pe de alta parte pentru \( n=4 \) obtinem \( |x^{4}-y^{4}|=1 \Leftrightarrow |x^{2}-y^{2}|\cdot |x^{2}+y^{2}|=1\Rightarrow |x^{2}+y^{2}|=1 \). \( (2) \)
Din (1) si (2) rezulta \( |x^{2}|+|y^{2}|=|x^{2}+y^{2}|\Rightarrow (\exists) \alpha>0 \) astfel incat \( \alpha x^{2}=y^{2} \) si cum
\( |x^{2}-y^{2}|=|x^{2}+y^{2}|\Leftrightarrow |x^{2}|\cdot |1-\alpha|=|x^{2}|\cdot |1+\alpha|\Leftrightarrow |x^{2}|\cdot (|1-\alpha|-|1+\alpha|)=0\Rightarrow x=0 \) sau \( |1-\alpha|=|1+\alpha| \) ultima egalitatea nu poate avea loc caci \( \alpha >0 \)\( \Rightarrow x=0 \).
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Re: Siruri de numere complexe
Dem. Vom folosi de doua ori identitatea paralelogramului : \( \underline{\overline{\left\|\ |u+v|^2+|u-v|^2=2\left(|u|^2+|v|^2\right)\ \right\|}}\ . \)Fie \( x, y \in \mathbb{C} \) cu proprietatea ca \( \forall\ n\in\mathbb N^* \) , \( |x^n - y^n| = 1 \). Sa se arate ca \( xy = 0 \) (Dinu Serbanescu).
\( \odot\ \ \begin{array}{c}
|x-y|=1\\\\\\
\left|x^2-y^2\right|=1\end{array}\ \Longrightarrow\ |x+y|=1\ . \)
\( |x-y|^2+|x+y|^2=2\left(|x|^2+|y|^2\right)\ \Longrightarrow\ |x|^2+|y|^2=1\ (1)\ . \)
\( \odot\ \ \ \begin{array}{c}
\left|x^2-y^2\right|=1\\\\\\
\left|x^4-y^4\right|=1\end{array}\ \Longrightarrow\ \left|x^2+y^2\right|=1\ . \)
\( \left|x^2-y^2\right|^2+\left|x^2+y^2\right|^2=2\left(|x|^4+|y|^4\right)\ \Longleftrightarrow\ |x|^4+|y|^4=1\ (2)\ . \)
\( \odot\ \ \left(|x|^2+|y|^2\right)^2=|x|^4+|y|^4+2|xy|^2\ \stackrel{(1)\wedge (2)}{\ \ \Longrightarrow\ \ }\ |xy|=0\ \Longrightarrow\ xy=0\ . \)