Fie \( a, b, c, d > 0 \) care verifica relatia
\( \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2} + \sqrt{b^2 + c^2} \cdot \sqrt{d^2 + a^2} = (a + c)(b + d) \).
Sa se arate ca \( ac = bd \). Interpretati geometric enuntul dat.
[ OLM 2008 Bucuresti, Problema 4 ]
Inegalitatea Ptolemeu intr-un patrulater ortodiagonal
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Inegalitatea Ptolemeu intr-un patrulater ortodiagonal
Life is complex: it has real and imaginary components.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Fie ABCD un patrulater ortodiagonal, O intersectia diagonalelor OA=a, OB=b, OC=c, OD=d.
Aplicand teorema lui Pitagora si relatia din enunt rezulta \( AB\cdot CD+AD\cdot DC=AC\cdot BD \), deci conform reciprocei teoremei lui Ptolemeu ABCD este inscriptibil si scriind puterea punctului O fata de cerc obtinem concluzia.
Aplicand teorema lui Pitagora si relatia din enunt rezulta \( AB\cdot CD+AD\cdot DC=AC\cdot BD \), deci conform reciprocei teoremei lui Ptolemeu ABCD este inscriptibil si scriind puterea punctului O fata de cerc obtinem concluzia.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Cat despre inegalitate, aplicand de 2 ori CBS ar rezulta ca membrul stang e mai mare sau egal cu membrul drept. Deci avem egalitate in CBS, de unde rezulta si concluzia.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog