identitate numere complexe via reziduri

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

identitate numere complexe via reziduri

Post by Cezar Lupu »

Fie \( z_{1}, z_{2}, \ldots, z_{n} \) numere complexe nenule distincte. Sa se arate ca pentru orice \( n\geq 3 \) are loc identitatea:

\( \sum_{k=1}^{n}\frac{1+z_{k}^{n-1}}{z_{k}^{2}}\prod_{j=1, j\neq k}^{n}\frac{1}{z_{k}-z_{j}}=\sum_{k=1}^{n}\frac{1}{z_{k}}\prod_{j=1}^{n}\frac{1}{z_{j}} \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Analiza complexa”