OJ Bacau 2000

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

OJ Bacau 2000

Post by alex2008 »

Aratati ca pentru orice \( a,b,c>0 \) are loc \( \sum_{cyc}\frac{a^2+bc}{b+c}\ge a+b+c \).

Bogdan Enescu, OJ Bacau, 2000
. A snake that slithers on the ground can only dream of flying through the air.
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

\( \sum \frac{a^2+bc}{b+c}\geq\sum a\Leftrightarrow \sum \frac{(a-b)(a-c)}{b+c}\geq0\Leftrightarrow\sum (a^2-b^2)(a^2-c^2)\geq0 \)
si putem presupune \( a\geq b\geq c \) caci e simetrica si apoi se transforma echivalent in:
\( (a^2-c^2)^2\geq(b^2-c^2)(a^2-b^2) \) care e evidenta. Egalitate cand \( a=b=c \).
n-ar fi rau sa fie bine :)
Post Reply

Return to “Clasa a IX-a”