Partea intreaga

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Partea intreaga

Post by alex2008 »

Sa se afle \( a,b,c\in \mathbb{N}^* \) astfel incat \( [\frac{a^2}{2b}]+[\frac{b^2}{2c}]+[\frac{c^2}{2a}]=0 \) .
. A snake that slithers on the ground can only dream of flying through the air.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( a=b=c=1 \)

Intradevar,

Din \( 0\le \frac{a^2}{2b}<1 \) rezulta \( a^2+1\le 2b \) si analoagele, de unde prin adunare,

\( (a-1)^2+(b-1)^2+(c-1)^2\le 0 \) si de aici concluzia.
Post Reply

Return to “Clasa a IX-a”