Sistem de ecuatii

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Sistem de ecuatii

Post by DrAGos Calinescu »

Rezolvati sistemul de mai jos in multimea numerelor reale:
\( 2x+x^2y=y \)
\( 2y+y^2z=z \)
\( 2z+z^2x=x \)

Caut o rezolvare pe baza de trigonometrie cu functia tangent.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

\( \phi\ \in\ \left\{\ 0\ ,\ \pm\ \frac {2\pi}{7}\ \right\} \) etc etc
Last edited by Virgil Nicula on Thu Feb 19, 2009 12:12 am, edited 2 times in total.
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Puteti dezvolta un pic va rog frumos, Domnule Nicula.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Poate mai tarziu. Am procedat ca tine, am dat o usoara indicatie. Dragos, banuiesc ca tu stii sa o rezolvi.
Ajunge indicatia ta si raspunsul meu (sper sa fie corect, l-am facut in minte si totu-i posibil).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notam \( x=\tan a \), \( y=\tan b \), \( z=\tan c \) si sistemul devine

\( \left{\begin{array}{cc}\tan b=\tan 2a\\\tan c=\tan 2b\\\tan a=\tan 2c\end{array} \)
Post Reply

Return to “Clasa a IX-a”