Aratati ca pentru orice \( x,y,z\in\left(0,\infty\right) \) are loc inegalitatea: \( \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\ge\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{z+x}{z+x+2y} \).
Marin Chirciu, R.M.T. 1/2009
Inegalitate
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Cateva idei si aici
http://www.mathlinks.ro/Forum/viewtopic ... 30#1425030