Fie \( x,y,z \) numere reale distincte. Sa se arate ca:
\( \sqrt[3]{x-y}+\sqrt[3]{y-z}+\sqrt[3]{z-x} \neq 0. \)
Bibliografie:
1. T. Andreescu, R. Gelca - Putnam and Beyond.
O expresie nenula
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Alin Galatan
- Site Admin
- Posts: 247
- Joined: Tue Sep 25, 2007 9:24 pm
- Location: Bucuresti/Timisoara/Moldova Noua
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Foarte interesanta problema. Intr-adevar, din faptul ca \( x, y, z \) sunt numere reale distincte rezulta ca si produsul numerelor \( a=\sqrt[3]{x-y}, b=\sqrt[3]{y-z} \) si \( c=\sqrt[3]{z-x} \) este nenul. Acum, folosim binecunoscuta identitate \( a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) \).
Daca, prin absurd, \( a+b+c=0 \), atunci o sa rezulte ca \( -3abc=0 \), ceea ce reprezinta o contradictie.
Daca, prin absurd, \( a+b+c=0 \), atunci o sa rezulte ca \( -3abc=0 \), ceea ce reprezinta o contradictie.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.