Determinati functia \( f:\mathbb{Z}\rightarrow\mathbb{Z} \)cu proprietatea
\( f(x^2+f(y))=f^2(x)+y \)
Lucian Dragomir, OJM 2001
O functie
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
\( f(x^2+f(y))=f^2(x)+y (1) \)
Daca facem substitutia\( x\rightarrow -x\Longrightarrow f((-x)^2+f(y))=f^2(-x)+y\Longleftrightarrow f(x^2+f(y))=f^2(-x)+y (2) \)
Din \( (1) \)si \( (2) \) \( \Longrightarrow f^2(x)=f^2(-x)\Longrightarrow |f(x)|=|f(-x)| \)
\( f(x)=f(-x) \) sau \( f(x)=-f(-x) \)(functia este fie para, fie impara).
In primul caz avem din ipoteza \( f(x^2+f(y))=f^2(x)+y (3) \), dar prin substitutia y \( \rightarrow -y \) obtinem
\( f(x^2+f(-y))=f^2(x)-y (4) \) , dar din paritatea functiei \( f(x^2+f(-y))=f(x^2+f(y)) \)(5)
Din (3) (4) si (5) rezulta contradictie.
Deci functia trebuie sa fie impara \( f(x)=-f(-x)\Longrightarrow f(0)=-f(0)\Longrightarrow f(0)=0 \)
Inlocuind in ipoteza \( y=0;x=1 \) obtinem \( f(1)=f^2(1) \) adica \( f(1)=1 \) sau \( 0 \)
Daca \( f(1)=0\Longrightarrow \)pt x=y=1 obtinem \( f(1+0)=1+0;f(1)=1 \) contradictie!
Deci \( f(1)=1 \)
Inlocuind in relatia initiala x=1 obtinem
\( f(1+f(y))=1+y \)
Acum procedam inductiv cu inductie dupa y si demonstram implicatia \( f(x)=x \)
Daca facem substitutia\( x\rightarrow -x\Longrightarrow f((-x)^2+f(y))=f^2(-x)+y\Longleftrightarrow f(x^2+f(y))=f^2(-x)+y (2) \)
Din \( (1) \)si \( (2) \) \( \Longrightarrow f^2(x)=f^2(-x)\Longrightarrow |f(x)|=|f(-x)| \)
\( f(x)=f(-x) \) sau \( f(x)=-f(-x) \)(functia este fie para, fie impara).
In primul caz avem din ipoteza \( f(x^2+f(y))=f^2(x)+y (3) \), dar prin substitutia y \( \rightarrow -y \) obtinem
\( f(x^2+f(-y))=f^2(x)-y (4) \) , dar din paritatea functiei \( f(x^2+f(-y))=f(x^2+f(y)) \)(5)
Din (3) (4) si (5) rezulta contradictie.
Deci functia trebuie sa fie impara \( f(x)=-f(-x)\Longrightarrow f(0)=-f(0)\Longrightarrow f(0)=0 \)
Inlocuind in ipoteza \( y=0;x=1 \) obtinem \( f(1)=f^2(1) \) adica \( f(1)=1 \) sau \( 0 \)
Daca \( f(1)=0\Longrightarrow \)pt x=y=1 obtinem \( f(1+0)=1+0;f(1)=1 \) contradictie!
Deci \( f(1)=1 \)
Inlocuind in relatia initiala x=1 obtinem
\( f(1+f(y))=1+y \)
Acum procedam inductiv cu inductie dupa y si demonstram implicatia \( f(x)=x \)