Functie bijectiva
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
dragosunguras
- Posts: 2
- Joined: Wed Apr 02, 2008 5:13 pm
- Location: Otelu-Rosu
Functie bijectiva
Fie \( f:[-\pi/2,\pi/2]\to\mathbb{R} \). Exista functii bijective f? Daca da, care ar fi acelea?
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
-
dragosunguras
- Posts: 2
- Joined: Wed Apr 02, 2008 5:13 pm
- Location: Otelu-Rosu
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
\( [\frac{\pi}{2},\frac{\pi}{2}] \) si \( (\frac{\pi}{2},\frac{\pi}{2}) \) sunt cardinal echivalente( cardinalul lor se numeste puterea continuului) deci exista o functie bijectiva \( g:[\frac{\pi}{2},\frac{\pi}{2}]\rightarrow (\frac{\pi}{2},\frac{\pi}{2}) \)
Apoi functia cautata este \( \tan \circ g: [\frac{\pi}{2},\frac{\pi}{2}]\rightarrow \mathbb{R} \)
Apoi functia cautata este \( \tan \circ g: [\frac{\pi}{2},\frac{\pi}{2}]\rightarrow \mathbb{R} \)