A transpus = adjuncta, atunci are loc inegalitatea

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

A transpus = adjuncta, atunci are loc inegalitatea

Post by Radu Titiu »

Fie \( A\in\mathcal{M}_n(\mathbb{R}) \) astfel incat \( A^{T}=A^{*} \). Demonstrati ca daca \( S(A) \) este suma tuturor elementelor matricei \( A \), atunci:

\( (S(A))^2\leq n^3 \cdot \det A \)
A mathematician is a machine for turning coffee into theorems.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Folosind relatia \( A\cdot A^{\ast}=(\det A) I_n \) obtinem \( A\cdot A^T=(\det A) I_n \), deci \( \sum_j {a_{ij}^2}=\det A \) pentru orice \( i \).

Apoi aplicand CBS se obtine concluzia.

\( LHS=(\sum _{i,j}{a_{ij})^2\le n\sum_i{(\sum_j{a_{ij})^2}}}\le n^2\sum_i{\sum_j{a_{ij}^2}}=RHS \)
Post Reply

Return to “Algebra”