1) Fie \( f:[0,1]\rightarrow\mathbb{R} \) o functie derivabila cu derivata continua, astfel incat \( \int_0^1f(x)dx=\int_0^1xf(x)dx=1 \)
Demonstrati ca \( \int_0^1(f^{\prime}(x))^2dx\ge 30 \)
2) Fie \( f,g:[0,1]\rightarrow\mathbb{R} \) doua functii continue, cu proprietatea ca \( \int_0^1f(x)g(x)dx=0 \)
Demonstrati ca
\( \(\int_0^1f^2(x)dx\)\(\int_0^1g^2(x)dx\)\ge 4\(\int_0^1f(x)dx\)^2\(\int_0^1g(x)dx\)^2 \)
Cezar & Tudorel Lupu
Alte doua inegalitati integrale
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Marius Dragoi
- Thales
- Posts: 126
- Joined: Thu Jan 31, 2008 5:57 pm
- Location: Bucharest
Este si aici... http://www.mathlinks.ro/viewtopic.php?t=191184
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
The Faculty of Automatic Control and Computers
-
Bogdan Cebere
- Thales
- Posts: 145
- Joined: Sun Nov 04, 2007 1:04 pm
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
2) Pentru orice a,b reali din CBS
\( \[\int_0^1(a+f(x))(b+g(x))dx\]^2\le \int_0^1(a+f(x))^2\int_0^1(b+g(x))^2dx \)
si apoi luand b=0 obtinem o functie de gradul II in a
\( a^2\[\int_0^1g^2(x)dx-\(\int_0^1g(x)dx\)^2\]+2a\(\int_0^1f(x)dx\)\(\int_0^1g^2(x)dx\)+\(\int_0^1f^2(x)dx\)\(\int_0^1g^2(x)dx\)\ge 0 \) pentru orice a real.
Din conditia ca discriminantul sa fie nepozitiv obtinem
\( \(\int_0^1f^2(x)dx\)\(\int_0^1g^2(x)dx\)\ge\(\int_0^1f^2(x)dx\)\(\int_0^1g(x)dx\)^2+\(\int_0^1f(x)dx\)^2\(\int_0^1g^2(x)dx\) \)
si de aici concluzia.
1) Folosim din nou CBS si formula de integrare prin parti si pentru orice a,b reali avem
\( \(\int_0^1(ax^2+bx)^2dx\)\(\int_0^1(f^{\prime}(x))^2dx\)\ge \(\int_0^1(ax^2+bx)f^{\prime}(x)dx\)^2=\((ax^2+bx)f(x)|_0^1-\int_0^1(2ax+b)f(x)dx\)^2=\((a+b)f(1)-2a-b\)^2 \)
Acum urmeza particularizarea parametrilor a si b astfel incat sa obtinem o forma cat mai simpla, adica a+b=0 mai precis a=1 , b=-1. Obtinem
\( \(\int_0^1(x^2-x)^2dx\)\(\int_0^1(f^{\prime}(x))^2dx\)\ge 1 \) de unde
\( \int_0^1(f^{\prime}(x))^2dx\ge \frac{1}{\int_0^1(x^2-x)^2dx}=\frac{1}{30} \)
\( \[\int_0^1(a+f(x))(b+g(x))dx\]^2\le \int_0^1(a+f(x))^2\int_0^1(b+g(x))^2dx \)
si apoi luand b=0 obtinem o functie de gradul II in a
\( a^2\[\int_0^1g^2(x)dx-\(\int_0^1g(x)dx\)^2\]+2a\(\int_0^1f(x)dx\)\(\int_0^1g^2(x)dx\)+\(\int_0^1f^2(x)dx\)\(\int_0^1g^2(x)dx\)\ge 0 \) pentru orice a real.
Din conditia ca discriminantul sa fie nepozitiv obtinem
\( \(\int_0^1f^2(x)dx\)\(\int_0^1g^2(x)dx\)\ge\(\int_0^1f^2(x)dx\)\(\int_0^1g(x)dx\)^2+\(\int_0^1f(x)dx\)^2\(\int_0^1g^2(x)dx\) \)
si de aici concluzia.
1) Folosim din nou CBS si formula de integrare prin parti si pentru orice a,b reali avem
\( \(\int_0^1(ax^2+bx)^2dx\)\(\int_0^1(f^{\prime}(x))^2dx\)\ge \(\int_0^1(ax^2+bx)f^{\prime}(x)dx\)^2=\((ax^2+bx)f(x)|_0^1-\int_0^1(2ax+b)f(x)dx\)^2=\((a+b)f(1)-2a-b\)^2 \)
Acum urmeza particularizarea parametrilor a si b astfel incat sa obtinem o forma cat mai simpla, adica a+b=0 mai precis a=1 , b=-1. Obtinem
\( \(\int_0^1(x^2-x)^2dx\)\(\int_0^1(f^{\prime}(x))^2dx\)\ge 1 \) de unde
\( \int_0^1(f^{\prime}(x))^2dx\ge \frac{1}{\int_0^1(x^2-x)^2dx}=\frac{1}{30} \)