Ecuatie aparent simpla

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
BurnerD1
Euclid
Posts: 31
Joined: Tue Mar 03, 2009 11:36 am
Location: Acasa

Ecuatie aparent simpla

Post by BurnerD1 »

Gasiti valorile numerelor \( x,y \in \mathbb{N} \) care satisfac ecuatia

\( xy + 6(x+y)=1987 \)
Ce sa-i faci ....
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Se obtine \( x=\frac{1987-6y}{y+6}\Longrightarrow y+6/1987-6y\Longrightarrow y+6/2023 \)
\( 2023=7\cdot 17^2 \)
Deci \( y+6\in {7,17,119,289,2023} \)
La fel si \( x+6 \) e in aceeasi multime si verifici ce valori satisfac relatia.
User avatar
BurnerD1
Euclid
Posts: 31
Joined: Tue Mar 03, 2009 11:36 am
Location: Acasa

nu inteleg..

Post by BurnerD1 »

Nu prea inteleg... cum din \( y+6 | 1987 - 6y \) rezulta ca \( y+6 | 2023 \) ??
Ce sa-i faci ....
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

\( y+6/1987-6y \)
Dar \( y+6/6y+36 \)
Stim ca daca \( a/b \) si \( a/c \Longrightarrow a/b+c \)
Deci din cele doua relatii \( y+6/2023 \)
Last edited by DrAGos Calinescu on Wed Mar 04, 2009 6:31 pm, edited 1 time in total.
User avatar
BurnerD1
Euclid
Posts: 31
Joined: Tue Mar 03, 2009 11:36 am
Location: Acasa

Post by BurnerD1 »

deci daca \( y+6 | 1987, y+6 | 6y+36 \) atunci \( y+6 \) nu divide \( 2023 + 6y? \)
Ce sa-i faci ....
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Scuze am modificat era\( 1987-6y \)
User avatar
BurnerD1
Euclid
Posts: 31
Joined: Tue Mar 03, 2009 11:36 am
Location: Acasa

Post by BurnerD1 »

Mai redacteaza te rog inca o data rezolvarea, fara greseli
Ce sa-i faci ....
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

E corecta, al doilea post avea o greseala.
User avatar
BurnerD1
Euclid
Posts: 31
Joined: Tue Mar 03, 2009 11:36 am
Location: Acasa

Post by BurnerD1 »

eu iti spun ca nu e corecta.. tu ai scris ca daca \( y+6|1987 \Longrightarrow y+6|2023 \). Trebuia \( y+6 | 2023 + 6y \). Am dreptate sau nu?
Ce sa-i faci ....
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Nu...\( y+6/2023 \)
User avatar
Al3xx
Euclid
Posts: 35
Joined: Fri Nov 07, 2008 10:39 pm
Location: Slatina

Post by Al3xx »

Sa nu o mai lungim atata ...

\( y+6|1987-6y(1)
y+6|y+6 \rightarrow y+6|6(y+6) \rightarrow y+6|6y+36(2) \)


Adunand (1) si (2) \( \rightarrow y+6|1987-6y+6y+36<=> y+6|2023 \)

deci e corect ..
User avatar
BurnerD1
Euclid
Posts: 31
Joined: Tue Mar 03, 2009 11:36 am
Location: Acasa

Post by BurnerD1 »

Scuze, acum am observat, mc mult!
Ce sa-i faci ....
Post Reply

Return to “Clasa a VIII-a”