Seemous 2009, Problema 1

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Alin Galatan
Site Admin
Posts: 247
Joined: Tue Sep 25, 2007 9:24 pm
Location: Bucuresti/Timisoara/Moldova Noua

Seemous 2009, Problema 1

Post by Alin Galatan »

a) Calculati limita \( \lim_{n\to\infty}\frac{(2n+1)!}{(n!)^2}\int_0^1(x(1-x))^nx^kdx \), unde \( k\in N \).

b) Calculati limita \( \lim_{n\to\infty}\frac{(2n+1)!}{(n!)^2}\int_0^1(x(1-x))^nf(x)dx \), unde f e o functie continua pe [0,1].
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Asa ca hint, e bine de stiut ca, daca \( I_{n}=\int_0^1x^{n}(1-x)^{n}dx \), atunci are loc formula \( I_{n}=\frac{(n!)^{2}}{(2n+1)!} \).
Post Reply

Return to “Analiza matematica”