Seemous 2009, Problema 4

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Alin Galatan
Site Admin
Posts: 247
Joined: Tue Sep 25, 2007 9:24 pm
Location: Bucuresti/Timisoara/Moldova Noua

Seemous 2009, Problema 4

Post by Alin Galatan »

Se dau numerele reale \( a_1,a_2,...,a_n \) si \( b_1,b_2,...,b_n \).
Definim matricele A si B din \( M_n(R) \) astfel:
\( a_{ij}=a_i-b_j \) si \( b_{ij}=1 \) daca \( a_{ij}\geq 0 \) si 0 daca \( a_{ij}<0 \)
Consideram o matrice C de acelasi ordin, cu elemente doar de 0 si 1, astfel ca
\( \sum_{i}b_{ij}=\sum_{i}c_{ij} \) pentru orice j si \( \sum_{j}b_{ij}=\sum_{j}c_{ij} \) pentru orice i.
Aratati ca:
a) \( \sum_{i,j=1}^n a_{ij}(b_{ij}-c_{ij})=0 \) si B=C
b) B e inversabila daca si numai daca exista doua permutari \( \sigma,\theta \) a multimii \( \{1,2,...,n\} \) astfel ca \(
b_{\sigma(1)}\leq a_{\theta(1)}\leq b_{\sigma(2)}\leq a_{\theta(2)}\leq ... \leq a_{\theta(n)} \)


Romania
Post Reply

Return to “Algebra”