Subiectul 1 ONM Etapa Judeteana

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
BurnerD1
Euclid
Posts: 31
Joined: Tue Mar 03, 2009 11:36 am
Location: Acasa

Subiectul 1 ONM Etapa Judeteana

Post by BurnerD1 »

Sa se determine numerele reale pozitive x,y,z care verrifica simultan egalitatile
\( x^2y^2 +1= x^2 + xy \)
\( y^2z^2 +1= y^2 + yz \)
\( z^2x^2 +1= z^2 + zx \)
Ce sa-i faci ....
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

\( x^2+xy=x^2y^2+1\geq2xy\Rightarrow x\geq y \) si toate analogele \( y\geq z, z\geq x\Rightarrow x=y=z=\pm1 \)
n-ar fi rau sa fie bine :)
User avatar
BurnerD1
Euclid
Posts: 31
Joined: Tue Mar 03, 2009 11:36 am
Location: Acasa

Post by BurnerD1 »

dc mai mare sau egal cu 2xy?
Ce sa-i faci ....
User avatar
BurnerD1
Euclid
Posts: 31
Joined: Tue Mar 03, 2009 11:36 am
Location: Acasa

Post by BurnerD1 »

BurnerD1 wrote:dc mai mare sau egal cu 2xy?
.... si de ce x>y din asta ?:D imi explici si mie te rog? si raspunsul e +1 , pt c sunt reale pozitive
Ce sa-i faci ....
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

BurnerD1 wrote:dc mai mare sau egal cu 2xy?
Pai e inegalitatea mediilor ...
. A snake that slithers on the ground can only dream of flying through the air.
mihai miculita
Pitagora
Posts: 93
Joined: Mon Nov 12, 2007 7:51 pm
Location: Oradea, Romania

Post by mihai miculita »

\( \mbox{Mai elementar: }x^2y^2+1=x^2+xy\Leftrightarrow x^2y^2+1-2xy=x^2-xy\Leftrightarrow (xy-1)^2=x.(x-y);\\
\mbox{cum: } (xy-1)^2\ge 0\Rightarrow x.(x-y)\ge 0;\dots \)

Observatie:
\( \mbox{Inegalitatea mediilor deriva din: } (\sqrt{a}-\sqrt{b})^2\ge 0\Leftrightarrow a-2.\sqrt{ab}+b\ge 0\Leftrightarrow a+b\ge 2.\sqrt{ab}\Leftrightarrow \frac{a+b}{2}\ge \sqrt{ab};(\forall)a;b\ge 0;\\
\mbox{ (adica: media aritmetica }\ge \mbox{ media geometrica; cu egalitate doar daca a=b).}\\
\mbox{Asa ca, folosind inegalitatea mediilor obtinem: } x^2y^2+1=2.\frac{x^2y^2+1}{2}\ge 2.\sqrt{\left(x^2y^2\right).1}=2xy\Rightarrow x^2y^2+1\ge 2.xy;(\forall)x;y\ge 0. \)
Post Reply

Return to “Clasa a VIII-a”