Functie gradul I interesanta

Post Reply
User avatar
Al3xx
Euclid
Posts: 35
Joined: Fri Nov 07, 2008 10:39 pm
Location: Slatina

Functie gradul I interesanta

Post by Al3xx »

\( Se\ considera\ functia\ f:\mathbb{R}- \mathbb{Q} \rightarrow \mathbb{R},f(x)=ax+b,a\not=0. \)
\( Sa\ se\ arate\ ca\ functia\ f\ are\ cel\ putin\ o\ valoare\ irationala. \)
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Daca b e rational: problema se reduce la a arata ca \( g(x)=ax \) are cel putin o valoare irationala. Presupunem prin absurd ca nu are.
\(
g(\sqrt 2) \in \mathbb{Q} \)

\( g(\sqrt 2 \cdot \sqrt 3) \in \mathbb{Q} \)
Echivalent cu
\( \sqrt2a \in \mathbb{Q} \)
\( \sqrt2a \cdot sqrt 3 \in \mathbb{Q} \)

Contradictie!


Daca b e irational:
1) a e irational \( \to f(\frac{1}{a})=b+1 \in \mathbb{R}-\mathbb{Q} \)
2) a e rational \( \to f(b)=b(a+1) \in \mathbb{R}-\mathbb{Q} \)
Post Reply

Return to “Clasa a 9-a”