Daca \( x,y,z\in\mathbb{R}_{+} \) cu \( x^{3}+y^{3}+z^{3}=3 \), atunci aratati ca
\( \sum_{cyc}\frac{x+2}{2x^{2}+1}\geq3 \).
Inegalitate cu 3 variabile
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
-
andy crisan
- Pitagora
- Posts: 56
- Joined: Sun Dec 28, 2008 5:50 pm
- Location: Pitesti
\( \sum \frac{x+2}{2x^2+1}\geq\sum\frac{x+2}{x^4+2}=\sum\frac{\sqrt[3]{a}+2}{a\sqrt[3]{a}+2}\geq3\frac{\sqrt[3]{\frac{a+b+c}{3}}+2}{\frac{a+b+c}{3}\cdot\sqrt[3]{\frac{a+b+c}{3}}+2}=3 \).
Prima data am aplicat \( x^4+1\geq2x^2 \), apoi am schimbat variabila \( a=x^3 \) si analoagele
si apoi am aplicat convexitatea functiei (cu Jensen) \( \frac{\sqrt[3]{a}+2}{a\sqrt[3]{a}+2} \) pe \( (0,\infty) \) (convexitate observata pe grafic).
Mai raman de tratat cazurile cand unele din numere sunt 0.
Prima data am aplicat \( x^4+1\geq2x^2 \), apoi am schimbat variabila \( a=x^3 \) si analoagele
si apoi am aplicat convexitatea functiei (cu Jensen) \( \frac{\sqrt[3]{a}+2}{a\sqrt[3]{a}+2} \) pe \( (0,\infty) \) (convexitate observata pe grafic).
Mai raman de tratat cazurile cand unele din numere sunt 0.
n-ar fi rau sa fie bine 