Numar compus

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Numar compus

Post by BogdanCNFB »

Fie \( n\geq 2,n\in\mathbb{N} \). Demonstrati ca numarul \( n^4+4^n \) nu poate fi niciodata prim.
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

Daca n=par concluzia este evidenta.
Daca n=impar \( \Rightarrow n=2k+1;k\in \mathbb{N}^* \).
Atunci avem\( n^4+4^n=n^4+4^{2k+1}=n^4+4\cdot(2^k)^4=a^4+4\cdot b^4 \)(Identitatea Sophie Germain), unde am facut notatiile \( n=a,2^k=b \).
\( a^4+4b^4=a^4+4a^2b^2+4b^4-4a^2b^2=(a^2+2b^2)^2-(2ab)^2
=(a^2+2b^2+2ab)(a^2+2b^2-2ab) \)
. Ambii factori sunt supraunitari, deci numarul este compus.
Post Reply

Return to “Clasa a VIII-a”