Pe dreapta \( d \) se considera punctele \( A_1,A_2,...,A_{11} \) cu proprietatea ca \( A_iA_j<1 \) pentru orice \( i,j\in {1,2,...,11} \). Sa se arate ca:
\( \sum_{1\le i<j\le 11} A_iA_j<30 \).
Puncte pe o dreapta
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- BogdanCNFB
- Thales
- Posts: 121
- Joined: Wed May 07, 2008 4:29 pm
- Location: Craiova
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Nu cred ca e bine... si \( A_{10}A_{11} \) apare tot de 10 ori in suma data...Marius Mainea wrote:Putem presupune ca ordinea este \( A_1,A_2,...,A_{11} \) atunci
LHS=\( 10A_1A_2+9A_2A_3+...+A_{10}A_{11}<10(A_1A_2+A_2A_3+...+A_{10}A_{11})=10A_1A_{11}<10 \)
Daca notam cu \( x_1<x_2<...<x_{11} \) coordonatele punctelor pe dreapta, suma data este egala cu \( \sum_{i<j}^{11}(x_j-x_i)=-10x_1-8x_2-6x_3-4x_4-2x_5+2x_7+4x_8+6x_9+8x_{10}+10x_{11}<10+8+6+4+2=30 \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog