Inegalitate conditionata de modul

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Antonache Emanuel
Euclid
Posts: 37
Joined: Sat Feb 28, 2009 4:15 pm
Location: Targoviste, Dambovita

Inegalitate conditionata de modul

Post by Antonache Emanuel »

Fie \( a\in\mathbb{R} \), \( |a|\leq4 \). Demonstrati ca:
\( x^4+y^4+axy+2\geq 0 \),\( \forall x, y\in\mathbb{R} \)
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

\( |a|\le 4\Rightarrow -4\le a\le 4\Rightarrow a\le -4 \)
Avem \( x^4+y^4+axy+2\ge x^4+y^4-4xy+2=x^4+y^4-2x^2y^2+2x^2y^2-4xy+2=(x^2-y^2)^2+2(xy-1)^2\ge 0 \).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

BogdanCNFB wrote: \( x^4+y^4+axy+2\ge x^4+y^4-4xy+2 \)
Nu prea e adevarat :wink:

\( |axy|\le\frac{|a|(x^2+y^2)}{2}\le 2(x^2+y^2) \) si de aici

\( axy\ge-2(x^2+y^2) \)

Apoi inegalitatea este evidenta:

\( LHS\ge x^4+y^4-2(x^2+y^2)+2=(x^2-1)^2+(y^2-1)^2\ge 0 \)
Post Reply

Return to “Clasa a IX-a”