Inegalitate cu min max

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Alin Galatan
Site Admin
Posts: 247
Joined: Tue Sep 25, 2007 9:24 pm
Location: Bucuresti/Timisoara/Moldova Noua

Inegalitate cu min max

Post by Alin Galatan »

Sa se gaseasca \( \min_{a,b \in R} \max (a^2+b,b^2+a). \)

Bibliografie:

1. T. Andreescu, R. Gelca - Putnam and Beyond.
pohoatza

Post by pohoatza »

Chiar ca beyond Putnam e ca dificultate. Fie \( t=\max(a^{2}+b,b^{2}+a) \). Din ce am inteles, se cere \( \min(t). \)

Din inegalitatea mediilor si adunand \( \frac{1}{2} \), obtinem
\( 2t + \frac{1}{2} \geq \left(a+\frac{1}{2}\right)^{2}+\left(b+\frac{1}{2}\right)^{2} \geq 0 \).

Astfel, \( t \geq -\frac{1}{4} \). Deci \( \min(t) = -\frac{1}{4}. \)
User avatar
Alin Galatan
Site Admin
Posts: 247
Joined: Tue Sep 25, 2007 9:24 pm
Location: Bucuresti/Timisoara/Moldova Noua

Post by Alin Galatan »

Pur si simplu \( max(a^2+b,b^2+a)\geq\frac{(a^2+b)+(b^2+a)}{2}\Rightarrow 2t\geq\frac{a^2+a+b^2+b}{2} \), de unde adunand \( \frac{1}{2} \) ce spui tu iese concluzia.
Post Reply

Return to “Clasa a IX-a”