Fie \( a,b,c \) numere reale pozitive. Demonstrati ca \( \frac{ab}{4a+3b+2c}+\frac{bc}{4b+3c+2a}+\frac{ca}{4c+3a+2b}\le\frac{a+b+c}{9} \) .
Baleanu Andrei Razvan, Mathematical Reflections 2/2008
Din nou inegalitate
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Din nou inegalitate
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Se poate demonstra o inegalitate mai generala:
\( \frac{ab}{xa+yb+2c}+\frac{bc}{xb+yc+2a}+\frac{ca}{xc+ya+2b}\le \frac{a+b+c}{x+y+2} \) pentru orice a,b,c pozitive si \( x,y\ge 1 \)
Pentru \( x=\frac{6}{5} \) si \( y=\frac{8}{5} \) se obtine problema 5 propusa de Nikolai Nicolov la TST 47. IMO Sofia , 2006.
\( \frac{ab}{xa+yb+2c}+\frac{bc}{xb+yc+2a}+\frac{ca}{xc+ya+2b}\le \frac{a+b+c}{x+y+2} \) pentru orice a,b,c pozitive si \( x,y\ge 1 \)
Pentru \( x=\frac{6}{5} \) si \( y=\frac{8}{5} \) se obtine problema 5 propusa de Nikolai Nicolov la TST 47. IMO Sofia , 2006.