Inegalitate cu logaritmi

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Inegalitate cu logaritmi

Post by Laurian Filip »

Fie \( n> 2 \) un numar natural si \( a\in (0,\infty) \) astfel incat
\( 2^a+\log_2a=n^2 \)

Sa se demonstreze ca
\( 2 \cdot \log_2 n>a>2 \cdot \log_2 n -\frac{1}{n} \) .


ONM 2004
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Prima inegalitate este banala deoarece a>1 si \( 2\log_2n=\log_2({2^a+\log_2a)>a \).
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Pentru a doua, dupa calcule sumare ajungem ca treb demonstrat \( n^2(1-\frac{1}{2^{1/n}})>\log_2(2\log_2n-\frac{1}{n}) \)
Post Reply

Return to “Clasa a X-a”