Matrice cu conditia det(A^3+I)=1
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Matrice cu conditia det(A^3+I)=1
Sa se determine matricele \( A\in M_{2}(\mathbb{Z}) \) astfel incat \( \det(A^{3}+I_{2})=1 \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
In primul rand sa observam ca daca luam cazul particular \( B=I_2 \) in aceasta problema obtinem \( A^2=O_2 \).
Vom arata ca toate matricele care indeplinesc aceasta proprietate indeplinesc si conditia din enunt.
\( A=O_2 \) cu siguranta verifica asa ca in restul demonstratiei presupunem \( A \neq O_2 \)
Evident \( \det(A)=0 \). Din teorema Cayley-Hamilton rezulta \( \tr(A)A=0 \), adica \( \tr(A)=0 \).
Atunci A va fi de forma
\( A=\left( \matrix { a& -\frac{a^2}{b} \cr b& -a } \right) \)
Daca \( b=0 \), din \( \det(A)=0 \) rezulta \( a=0 \) adica \( A=O_2 \).
Pentru \( b\neq0 \), din calcule obtinem
\( \det(A+I_2)=1 \)
\( \det(A-I_2)=1 \)
Deci
\( \det(A^3+I_2)=\det(A+I_2) \det(A^2-A+I_2) = \det( -A+I_2)= (-1)^2 \det(A-I_2)=1 \).
Vom arata ca toate matricele care indeplinesc aceasta proprietate indeplinesc si conditia din enunt.
\( A=O_2 \) cu siguranta verifica asa ca in restul demonstratiei presupunem \( A \neq O_2 \)
Evident \( \det(A)=0 \). Din teorema Cayley-Hamilton rezulta \( \tr(A)A=0 \), adica \( \tr(A)=0 \).
Atunci A va fi de forma
\( A=\left( \matrix { a& -\frac{a^2}{b} \cr b& -a } \right) \)
Daca \( b=0 \), din \( \det(A)=0 \) rezulta \( a=0 \) adica \( A=O_2 \).
Pentru \( b\neq0 \), din calcule obtinem
\( \det(A+I_2)=1 \)
\( \det(A-I_2)=1 \)
Deci
\( \det(A^3+I_2)=\det(A+I_2) \det(A^2-A+I_2) = \det( -A+I_2)= (-1)^2 \det(A-I_2)=1 \).