Functie derivabila si marginita
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Marius Dragoi
- Thales
- Posts: 126
- Joined: Thu Jan 31, 2008 5:57 pm
- Location: Bucharest
Functie derivabila si marginita
\( f:[0, \infty)\to\mathbb{R} \) derivabila, cu derivata marginita. Daca \( \lim_{x\to\infty} \int_{0}^{x} {f(t) dt} \) exista si este finita, atunci \( \lim_{x\to\infty} \ f(x) = 0 \).
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
The Faculty of Automatic Control and Computers
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Fie \( \epsilon>0 \) arbitrar si \( x_n\rightarrow\infty \).
Atunci \( \int_{x_n}^{x_n+\epsilon}f(t)dt\rightarrow 0\ (n\rightarrow\infty) \).
Folosind teorema de medie exista \( c_n\in(x_n,x_n+\epsilon) \) astfel incat \( \epsilon f(c_n)\rightarrow 0\ (n\rightarrow\infty) \) deci \( f(c_n)\rightarrow 0\ (n\rightarrow\infty) \).
Deasemenea din teorema lui Lagrange \( |f(x_n)-f(c_n)|\le (c_n-x_n)\cdot M \).
Asadar \( |f(x_n)|\le |f(x_n)-f(c_n)|+|f(c_n)|\le\epsilon\cdot M+|f(c_n)| \).
De aici rezulta concluzia problemei.
Atunci \( \int_{x_n}^{x_n+\epsilon}f(t)dt\rightarrow 0\ (n\rightarrow\infty) \).
Folosind teorema de medie exista \( c_n\in(x_n,x_n+\epsilon) \) astfel incat \( \epsilon f(c_n)\rightarrow 0\ (n\rightarrow\infty) \) deci \( f(c_n)\rightarrow 0\ (n\rightarrow\infty) \).
Deasemenea din teorema lui Lagrange \( |f(x_n)-f(c_n)|\le (c_n-x_n)\cdot M \).
Asadar \( |f(x_n)|\le |f(x_n)-f(c_n)|+|f(c_n)|\le\epsilon\cdot M+|f(c_n)| \).
De aici rezulta concluzia problemei.
Last edited by Marius Mainea on Tue Apr 07, 2009 8:15 pm, edited 1 time in total.