Functie derivabila si marginita

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Functie derivabila si marginita

Post by Marius Dragoi »

\( f:[0, \infty)\to\mathbb{R} \) derivabila, cu derivata marginita. Daca \( \lim_{x\to\infty} \int_{0}^{x} {f(t) dt} \) exista si este finita, atunci \( \lim_{x\to\infty} \ f(x) = 0 \).
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Fie \( \epsilon>0 \) arbitrar si \( x_n\rightarrow\infty \).

Atunci \( \int_{x_n}^{x_n+\epsilon}f(t)dt\rightarrow 0\ (n\rightarrow\infty) \).

Folosind teorema de medie exista \( c_n\in(x_n,x_n+\epsilon) \) astfel incat \( \epsilon f(c_n)\rightarrow 0\ (n\rightarrow\infty) \) deci \( f(c_n)\rightarrow 0\ (n\rightarrow\infty) \).

Deasemenea din teorema lui Lagrange \( |f(x_n)-f(c_n)|\le (c_n-x_n)\cdot M \).

Asadar \( |f(x_n)|\le |f(x_n)-f(c_n)|+|f(c_n)|\le\epsilon\cdot M+|f(c_n)| \).

De aici rezulta concluzia problemei.
Last edited by Marius Mainea on Tue Apr 07, 2009 8:15 pm, edited 1 time in total.
Post Reply

Return to “Analiza matematica”