Fie \( a_{1},a_{2},\dots ,a_{n}, n\geq 2 \), numere reale pozitive si distincte cu suma lor egala cu \( n \). Sa se arate ca functia \( f:\[1,\infty \)\rightarrow\mathbb{R} \) definita prin \( f(x)=a_{1}^{x}+a_{2}^{x}+\dots+a_{n}^{x} \) este strict crescatoare.
Cezar Lupu, lista scurta ONM 2008
Exponentiala strict crescatoare
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
-
andy crisan
- Pitagora
- Posts: 56
- Joined: Sun Dec 28, 2008 5:50 pm
- Location: Pitesti
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Solutie cu derivate:
\( f^{\prime}(x)=a_1^x\ln a_1+...+a_n^x\ln a_n \) si
\( f^{\prime\prime}(x)=a_1^x\ln^2 a_1+...+a_n^x\ln^2 a_n\> 0 \) deci
\( f^{\prime} \) e strict crescatoare si de aici \( f^{\prime}(x)\> f^{\prime}(1)\ge 0 \)(x>1) ultima inegalitate rezultand din inegalitatea lui Jensen
Apoi f e strict crescatoare.
Justificare:
\( g(x)=x\ln x \) este convexa si notand \( a_i=\frac{nx_i}{x_1+x_2+...+x_n} \) inegalitatea \( f^{\prime}(1)\ge 0 \) se reduce la
\( \sum {x_i\ln x_i}\ge (x_1+x_2+...+x_n)\ln (\frac{x_1+x_1+...+x_n}{n}) \) care este exact inegalitatea lui Jensen
\( f^{\prime}(x)=a_1^x\ln a_1+...+a_n^x\ln a_n \) si
\( f^{\prime\prime}(x)=a_1^x\ln^2 a_1+...+a_n^x\ln^2 a_n\> 0 \) deci
\( f^{\prime} \) e strict crescatoare si de aici \( f^{\prime}(x)\> f^{\prime}(1)\ge 0 \)(x>1) ultima inegalitate rezultand din inegalitatea lui Jensen
Apoi f e strict crescatoare.
Justificare:
\( g(x)=x\ln x \) este convexa si notand \( a_i=\frac{nx_i}{x_1+x_2+...+x_n} \) inegalitatea \( f^{\prime}(1)\ge 0 \) se reduce la
\( \sum {x_i\ln x_i}\ge (x_1+x_2+...+x_n)\ln (\frac{x_1+x_1+...+x_n}{n}) \) care este exact inegalitatea lui Jensen
- elena_romina
- Euclid
- Posts: 40
- Joined: Sat Nov 15, 2008 12:15 pm