ONM problema 4

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

ONM problema 4

Post by Laurian Filip »

Fie \( ABC \) un triunghi unghi ascutitunghic si fie \( D \) un punct in interiorul triunghiului astfel incat \( m(\angle ADB)-m(\angle ACB)=90^o \) si \( AC \cdot BD=AD \cdot BC \).

a) Sa se calculeze suma masurilor unghiurilor \( \angle DAC \) si \( \angle DBC \).
b) Sa se calculeze \( \frac{AB \cdot CD}{AC \cdot BD} \)
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Re: ONM problema 4

Post by Virgil Nicula »

Frumoasa problema ! Mi-am permis sa extind neesential enuntul problemei propuse.
Fie \( \triangle ABC \) ascutitunghic si un punct \( D \) interior acestuia ca \( \frac {DA}{DB}=\frac {CA}{CB} \)

si \( m\left(\angle ADB\right)=C+\phi\ <\ 180^{\circ} \) . Sa se arate ca \( \frac {AB}{AC}\cdot\frac{DC}{DB}=2\cdot \sin\frac {\phi}{2} \) .
Dem. Consideram punctul \( E \) interior unghiului \( \angle ADB \) pentru care \( m(\angle ADE)=C \) si \( DE=DB \) . Se observa ca

\( m(\angle BDE)=\phi \) , \( \frac {EB}{DB}=2\cdot \sin\frac {\phi}{2} \) si \( \triangle ACB\sim\triangle ADE \) deoarece \( \angle ACB\equiv\angle ADE \) si \( \frac {CA}{CB}=\frac {DA}{DB} \) . Rezulta

\( \angle BAC\equiv\angle EAD \) , \( \angle BAE\equiv\angle CAD \) si \( \frac {AB}{AE}=\frac {AC}{AD} \). Asadar, \( \triangle BAE\sim\triangle CAD \) .

In concluzie, \( \frac {AB}{AC}=\frac {EB}{DC} \) si \( \frac {AB}{AC}\cdot\frac{DC}{DB}=\frac {EB}{DC}\cdot\frac {DC}{DB}=\frac {EB}{DB}=2\cdot \sin\frac {\phi}{2} \) , adica \( \frac {AB}{AC}\cdot\frac{DC}{DB}=2\cdot \sin\frac {\phi}{2} \) .
Post Reply

Return to “Clasa a VII-a”