Fie \( X,A \in \mathcal{M}_n(\mathbb{C}) \) cu \( A \neq O_n \). Aratati ca
\( \det(X+A)=\det(X)+\tr(X^{*}A) \), \( \forall X \in \mathcal{M}_n(\mathbb{C}) \)
daca si numai daca \( rang(A)=1 \).
Matrice de rang 1
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
Matrice de rang 1
A mathematician is a machine for turning coffee into theorems.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Presupunem ca are loc relatia si sa aratam ca rang(A)=1.
Presupunem ca rang(A)=r.
Fie A=UQV, unde U si V sunt matrice inversabile iar Q matricea care are primele r elemente de pe diagonala principala 1 si in rest 0. Alegand X=UV se obtine
\( \det (UV)\det (I_n+Q)=\det (UV)(\det I_n+\tr Q) \),
adica \( 2^r=1+r \), deci \( r=1 \).
Reciproc se foloseste faptul ca coeficientul termenului \( X^k \) al polinomului caracteristic al unei matrice de ordin n este suma minorilor principali de ordin n-k ai matricei respective.
Presupunem ca rang(A)=r.
Fie A=UQV, unde U si V sunt matrice inversabile iar Q matricea care are primele r elemente de pe diagonala principala 1 si in rest 0. Alegand X=UV se obtine
\( \det (UV)\det (I_n+Q)=\det (UV)(\det I_n+\tr Q) \),
adica \( 2^r=1+r \), deci \( r=1 \).
Reciproc se foloseste faptul ca coeficientul termenului \( X^k \) al polinomului caracteristic al unei matrice de ordin n este suma minorilor principali de ordin n-k ai matricei respective.