Problema 4 , lista scurta 2009

Moderators: Bogdan Posa, Laurian Filip

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Problema 4 , lista scurta 2009

Post by alex2008 »

Fie \( n \) un numar natural nenul si \( a_1,a_2,...,a_n \) numere intregi astfel incat \( a_1+a_2+...+a_n=15k\ ,\ k\in \mathbb{Z} \). Aratati ca \( a_1^5+a_2^5+...+a_n^5 \) se divide cu \( 15 \).

Marian Teler
. A snake that slithers on the ground can only dream of flying through the air.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Folosim relatiile (Fermat): \( x^5-x \) se divide la 5 si \( x^3-x \)se divide la 3 pentru orice x intreg.

Asadar \( \sum {a_k^5}=\sum {(a_k^5-a_k)}+\sum {a_k} \) se divide la 5 si
\( \sum {a_k^5}=\sum {(a_k^5-a_k^3)}+\sum {(a_k^3-a_k)}+\sum {a_k} \) se divide la 3.
Post Reply

Return to “Clasa a VIII-a”