Daca a,b,c sunt pozitive si \( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le 3 \) atunci \( \frac{a^2+1}{\sqrt{a^2-a+1}}+\frac{b^2+1}{\sqrt{b^2-b+1}}+\frac{c^2+1}{\sqrt{c^2-c+1}}\ge 6 \)
,,Recreatii Matematice''
Inegalitate conditionata cu alta inegalitate
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Cum \( 3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\Longrightarrow abc\ge1
\) si \( \frac{a^{2}+1}{\sqrt{a^{2}-a+1}}=\frac{a^{2}-a+1+a}{\sqrt{a^{2}-a+1}}=\sqrt{a^{2}-a+1}+\frac{a}{\sqrt{a^{2}-a+1}} \) rezulta imediat cerinta:
\( \sum\frac{a^{2}+1}{\sqrt{a^{2}-a+1}}=\sum\sqrt{a^{2}-a+1}+\sum\frac{a}{\sqrt{a^{2}-a+1}}\ge6\sqrt[6]{abc}\ge6 \).
\) si \( \frac{a^{2}+1}{\sqrt{a^{2}-a+1}}=\frac{a^{2}-a+1+a}{\sqrt{a^{2}-a+1}}=\sqrt{a^{2}-a+1}+\frac{a}{\sqrt{a^{2}-a+1}} \) rezulta imediat cerinta:
\( \sum\frac{a^{2}+1}{\sqrt{a^{2}-a+1}}=\sum\sqrt{a^{2}-a+1}+\sum\frac{a}{\sqrt{a^{2}-a+1}}\ge6\sqrt[6]{abc}\ge6 \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste