Inegalitate conditionata cu alta inegalitate

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Inegalitate conditionata cu alta inegalitate

Post by Marius Mainea »

Daca a,b,c sunt pozitive si \( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le 3 \) atunci \( \frac{a^2+1}{\sqrt{a^2-a+1}}+\frac{b^2+1}{\sqrt{b^2-b+1}}+\frac{c^2+1}{\sqrt{c^2-c+1}}\ge 6 \)

,,Recreatii Matematice''
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Cum \( 3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\Longrightarrow abc\ge1
\)
si \( \frac{a^{2}+1}{\sqrt{a^{2}-a+1}}=\frac{a^{2}-a+1+a}{\sqrt{a^{2}-a+1}}=\sqrt{a^{2}-a+1}+\frac{a}{\sqrt{a^{2}-a+1}} \) rezulta imediat cerinta:

\( \sum\frac{a^{2}+1}{\sqrt{a^{2}-a+1}}=\sum\sqrt{a^{2}-a+1}+\sum\frac{a}{\sqrt{a^{2}-a+1}}\ge6\sqrt[6]{abc}\ge6 \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Aceasta este inegalitatea propusa I.V. Maftei din Shortlist ONM 2006, clasa a IX-a.
. A snake that slithers on the ground can only dream of flying through the air.
Post Reply

Return to “Inegalitati”