Concursul "Ion Ciolac" problema 2

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Concursul "Ion Ciolac" problema 2

Post by BogdanCNFB »

Fie \( f:[0,\frac{\pi}{2}] \)\{0}\( \to\mathbb{R},\ f(x)=x+ctgx \). Aratati ca f este monotona.
Last edited by BogdanCNFB on Sat Apr 25, 2009 11:45 am, edited 1 time in total.
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Pe \( (0,\frac{\pi}{2}] \) calculam derivata \( f^{\prime}(x)=\frac{\sin^2x-1}{\sin^2x}\le 0 \). In concluzie \( f \) este descrescatoare.
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Inteleg ca tu stii derivate, dar totusi suntem la clasa a9a.
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Eu unul cred ca si un elev de clasa a 9-a poate folosi derivatele la o problema ca aceasta daca le stie, mai ales daca este olimpic.
Bogdan Cebere
Thales
Posts: 145
Joined: Sun Nov 04, 2007 1:04 pm

Post by Bogdan Cebere »

Discutia asta a mai fost pe site. Nu trebuie incurajat tocitul unor formule (fara a le intelege), altul e scopul matematicii. Si oricat ar fi de populara folosirea derivatelor la clasa a 9-a, la olimpiada, nu ar trebui sa procedam asa si aici.
Post Reply

Return to “Clasa a IX-a”