Inegalitate

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Inegalitate

Post by Mateescu Constantin »

Sa se arate ca:

\( (x+y+z)^2(xy+yz+zx)^2\leq3(x^2+xy+y^2)(y^2+yz+z^2)(z^2+zx+x^2) \), oricare ar fi x, y, z >0.

Gazeta Matematica 3/2009, Lucian Petrescu, Tulcea
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Este o inegalitate cunoscuta :

\( \sqrt{x^2+xy+y^2}\ge \frac{\sqrt{3}}{2}(x+y) \)

Ridicand la patrat obtinem :

\( x^2+xy+y^2\ge \frac{3}{4}(x+y)^2 \)

Si analog :

\( y^2+yz+z^2\ge \frac{3}{4}(y+z)^2 \)

\( z^2+zx+x^2\ge \frac{3}{4}(z+x)^2 \)

Inmultindu-le pe toate trei si apoi inmultind cu \( 3 \) obtinem :

\( LHS \ge \frac{81}{64}(x+y)^2(y+z)^2(z+x)^2 \)

Este o inegalitate cunoscuta :

\(
9(x+y)(y+z)(z+x)\ge 8(x+y+z)(xy+yz+zx) \)


Impartind cu \( 8 \) si ridicand la patrat se obtine :

\(
\frac{81}{64}(x+y)^2(y+z)^2(z+x)^2\ge ((x+y+z)(xy+yz+zx))^2 \)


Iar concluzia este imediata .

Totusi este mai frumoasa demonstratia geometrica .
. A snake that slithers on the ground can only dream of flying through the air.
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Este o problema de la olimpiada de matematica din India, 2007.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a IX-a”