Fie \( x,y,z>0 \) astfel incat \( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1 \) . Sa se demonstreze ca :
\( (x-1)(y-1)(z-1)\ge 8 \)
Inegalitate conditionata
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
Inegalitate conditionata
. A snake that slithers on the ground can only dream of flying through the air.
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Fie \( x=\frac{a+b+c}{a},\ y=\frac{a+b+c}{b},\ z=\frac{a+b+c}{c}\ \left(a,\ b,\ c>0\right) \). Atunci \( \prod\left(x-1\right)=\prod\frac{b+c}{a}=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge\frac{8\sqrt{ab\cdot bc\cdot ca}}{abc}=8 \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste