Fie \( a,\ b,\ c \) trei numere reale pozitive astfel incat \( ab+bc+ca=3 \).
Demonstrati ca: \( \(1+a^{2}\)\(1+b^{2}\)\(1+c^{2}\)\geq 8. \)
Inegalitate conditionata cu ab+bc+ca=3
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Aplicam inegalitatea lui Holder si avem:
\( (a^{2}b^{2}+a^{2}+b^{2}+1)(b^{2}+c^{2}+b^{2}c^{2}+b^{2}c^{2}+1)(a^{2}+a^{2}c^{2}+c^{2}+1)\geq \left\(\sqrt[4]{a^{2}b^{2}b^{2}a^{2}}+\sqrt[4]{a^{2}c^{2}a^{2}c^{2}}+\sqrt[4]{b^{2}b^{2}c^{2}c^{2}}+\sqrt[4]{1\cdot1\cdot1}\right\)^{4}=(ab+bc+ca+1)^{4}=64. \)
\( \Longleftrightarrow (a^{2}+1)^{2}(b^{2}+1)^{2}(c^{2}+1)^{2}\geq 64. \)
\( \Longleftrightarrow (a^{2}+1)(b^{2}+1)(c^{2}+1)\geq 8. \)
\( (a^{2}b^{2}+a^{2}+b^{2}+1)(b^{2}+c^{2}+b^{2}c^{2}+b^{2}c^{2}+1)(a^{2}+a^{2}c^{2}+c^{2}+1)\geq \left\(\sqrt[4]{a^{2}b^{2}b^{2}a^{2}}+\sqrt[4]{a^{2}c^{2}a^{2}c^{2}}+\sqrt[4]{b^{2}b^{2}c^{2}c^{2}}+\sqrt[4]{1\cdot1\cdot1}\right\)^{4}=(ab+bc+ca+1)^{4}=64. \)
\( \Longleftrightarrow (a^{2}+1)^{2}(b^{2}+1)^{2}(c^{2}+1)^{2}\geq 64. \)
\( \Longleftrightarrow (a^{2}+1)(b^{2}+1)(c^{2}+1)\geq 8. \)
Re: Inegalitate conditionata cu ab+bc+ca=3
Inegalitatea este echivalenta cu :
\( (1+a^2)(1+b^2)(1+c^2)\ge (ab+bc+ca-1)^2 \)
Folosim \( AM-GM \) si avem ca :
\( RHS=a^2b^2+b^2c^2+c^2a^2+2abc(a+b+c)-2(ab+bc+ca)+1\le a^2b^2+b^2c^2+c^2a^2+a^2b^2c^2+(a+b+c)^2-2(ab+bc+ca)+1=LHS \)
\( (1+a^2)(1+b^2)(1+c^2)\ge (ab+bc+ca-1)^2 \)
Folosim \( AM-GM \) si avem ca :
\( RHS=a^2b^2+b^2c^2+c^2a^2+2abc(a+b+c)-2(ab+bc+ca)+1\le a^2b^2+b^2c^2+c^2a^2+a^2b^2c^2+(a+b+c)^2-2(ab+bc+ca)+1=LHS \)
. A snake that slithers on the ground can only dream of flying through the air.