Inegalitate usurica

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate usurica

Post by Claudiu Mindrila »

Fie \( x,\ y,\ z\in\mathbb{R}_{+}^{*} \) astfel incat \( x^{2}y^{2}+y^{2}z^{2}+z^{2}x^{2}=3x^{2}y^{2}z^{2} \). Demonstrati ca \( \frac{1}{x^{2}+x+1}+\frac{1}{y^{2}+y+1}+\frac{1}{z^{2}+z+1}\le1 \).

Razvan Ceuca, Recreatii Matematice 1/2009
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Post by Andi Brojbeanu »

\( \frac{3x^2y^2z^2}{x^2y^2+y^2z^2+z^2x^2}=1 \Rightarrow \frac{3}{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=1 \Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3. \)
Aplicand inegalitatea Cauchy-Buniakowski-Schwarz (forma Titu Andreescu) avem: \( \frac{(\frac{1}{x})^2}{1}+\frac{(\frac{1}{y})^2}{1}+\frac{(\frac{1}{z})^2}{1}\geq \frac{(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2}{(1+1+1)^2}, \) adica \( \frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\geq \frac{(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2}{3}\Rightarrow \)
\( \Rightarrow (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2\leq 9 \Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\leq 3 \).
\( \frac{1}{x^2+x+1}\leq \frac{1}{3x} \) deoarece \( x^2+x+1\geq 3x; x^2-2x+1\geq 0; (x-1)^2\geq 0 \), evident.
Analog pentru \( \frac{1}{y^2+y+1} \) si \( \frac{1}{z^2+z+1} \).
Atunci \( \frac{1}{x^2+x+1}+\frac{1}{y^2+y+1}+\frac{1}{z^2+z+1}\leq \frac{1}{3}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})\leq \frac{1}{3}\cdot 3=1 \).
Liviu Ornea
-
Posts: 123
Joined: Sun Sep 30, 2007 8:48 pm
Contact:

Post by Liviu Ornea »

"Aplicand inegalitatea Cauchy-Buniakowski-Schwarz (forma Titu Andreescu)" !!!??!!
Mai copii...

L.O.
Post Reply

Return to “Clasa a VII-a”