Gh. Titeica 2009, echipe IX-X, problema 1

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
mumble
Euclid
Posts: 48
Joined: Wed Jan 30, 2008 10:25 pm

Gh. Titeica 2009, echipe IX-X, problema 1

Post by mumble »

Daca \( x_1,x_2,...,x_n\in\(0,\infty\) \) si \( n\in\mathbb{N},n\geq 2 \) demonstrati ca:
\( \sqrt{x_1}+\sqrt[4]{x_2}+\sqrt[6]{x_3}+...+\sqrt[2n]{x_n}>\sqrt[n(n+1)]{x_1x_2...x_n}. \)

GM 2/2003
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Folosind AM-GM avem :

\( LHS =\sum 2k\frac{\sqrt[2k]{x_k}}{2k}\ge n(n+1)\sqrt[n(n+1)]{\frac{x_1x_2...x_n}{2^24^4...(2n)^{2n}}}>n(n+1)\frac{\sqrt{x_1x_2...x_n}}{\frac{2^2+4^2+...+(2n)^2}{n(n+1)}}>RHS \)
Post Reply

Return to “Clasa a X-a”