Fie \( a_1,\ a_2,\ ...,\ a_n \in \left\(0,\ \frac{\pi}{2}\right\)\ ,\ \ n\in \mathbb{N}, \ n\ge 2 \), astfel incat \( \prod_{k=1}^{n}\tan\ a_k=1 \).
Sa se determine maximul expresiei:\( \prod_{k=1}^{n}\sin\ a_k \).
G.M. 4/2002
Maximul unei expresii trigonometrice
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Maximul unei expresii trigonometrice
Last edited by Mateescu Constantin on Sun Sep 12, 2010 6:41 pm, edited 1 time in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)