Concurenta intr-un patrulater circumscriptibil

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Concurenta intr-un patrulater circumscriptibil

Post by Mateescu Constantin »

Fie \( ABCD \) un patrulater convex circumscris unui cerc si \( P,\ Q,\ R,\ S \) punctele de tangenta ale patrulaterului cu cercul, \( P\in (AB),\ Q\in (BC),\ R\in (CD),\ S\in (DA). \)
Sa se arate ca dreptele \( AC,\ BD,\ PR,\ QS \) sunt concurente.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Aratam ca AC , PR si QS sunt concurente.

Fie \( \{X\}=AC\cap QS \) si \( \{Y\}=AC\cap PR \)

Din teorema sinusurilor in triunghiurile ASX si CQX avem

\( \frac{AX}{\sin \angle S}=\frac{AS}{\sin \angle X} \) si \( \frac{CX}{\sin \angle Q}=\frac{CQ}{\sin \angle X} \) deci \( \frac{AX}{CX}=\frac{AS}{CQ} \) (1)

Analog din triunghiurile APY si CRY obtinem \( \frac{AY}{CY}=\frac{AP}{CR} \) (2)

Din (1) si (2) rezulta ca \( \frac{AX}{CX}=\frac{AY}{CY} \) de unde X=Y.

Analog se arata ca BD , PR si QS sunt concurente si apoi concluzia problemei.
mihai miculita
Pitagora
Posts: 93
Joined: Mon Nov 12, 2007 7:51 pm
Location: Oradea, Romania

patrulater circumscriptibil

Post by mihai miculita »

Alte proprietati gasiti ale patrulaterelor circumscriptibile gasiti aici:
http://www.cip.ifi.lmu.de/~grinberg/CircumRev.pdf
Post Reply

Return to “Clasa a IX-a”