Inegalitate intr-un interval

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Inegalitate intr-un interval

Post by alex2008 »

Fie \( a,b,c\in \left[\frac{1}{\sqrt{2}},\sqrt{2}\right] \) . Sa se demonstreze ca :

\(
\sum_{cyc}\frac{3}{a+2b}\ge \sum_{cyc}\frac{2}{a+b} \)
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Scriem inegalitatea sub forma:

\( \sum\left\(\frac{3}{a+2b}-\frac{2}{a+b}+\frac{1}{6a}-\frac{1}{6b}\right\)\ge 0 \)

\( \Longleftrightarrow \sum\frac{(a-b)^2(2b-a)}{6ab(a+2b)(a+b)}\ge 0 \)

Dar \( 2b-a\ge \frac{2}{\sqrt{2}}-\sqrt{2}=0 \) si astfel inegalitatea e demonstrata. Egalitatea are loc pentru \( a=b=c \).
Post Reply

Return to “Clasa a IX-a”