Fie \( a,b,c \) trei numere reale pozitive. Demonstrati ca:
\( \frac{a}{\sqrt{2(b^2+c^2)}}+\frac{b}{\sqrt{2(c^2+a^2)}}+\frac{c}{\sqrt{2(a^2+b^2)}}\geq\frac{3}{2}. \)
Inegalitate mai "tare" ca Nesbitt
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Inegalitate mai "tare" ca Nesbitt
Feuerbach
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
IMO 1989 Longlist - Problema 68
In IMO Compendium (IMO 1989 Longlist - Problema 68, pag 239) apare urmatoare inegalitate propusa de Mongolia:
Daca \( 0<k\leq 1 \) si \( a_{i}, \ i=\overline{1,n} \) sunt numere reale pozitive atunci "are loc" inegalitatea:
\( \left (\frac{a_{1}}{a_{2}+a_{3}+\dots+a_{n}}\right )^k+\dots +\left (\frac{a_{n}}{a_{1}+a_{2}+\dots+a_{n-1}}\right )^k\geq\frac{n}{(n-1)^{k}}. \)
Pentru \( n=3 \ \wedge\ k=\frac{1}{2} \) si \( a_{1}=a^2, \ a_{2}=b^2, \ a_{3}=c^2 \) se obtine inegalitatea propusa, care s-a dovedit a fi gresita. Deci inegalitatea din IMO Compendium e gresita. In schimb aceasta inegalitate este adevarata daca \( k\geq 1 \) (se aplica inegalitatile Power Mean si apoi Cauchy-Schwarz). Multumesc mult pentru contraexemplu.
Daca \( 0<k\leq 1 \) si \( a_{i}, \ i=\overline{1,n} \) sunt numere reale pozitive atunci "are loc" inegalitatea:
\( \left (\frac{a_{1}}{a_{2}+a_{3}+\dots+a_{n}}\right )^k+\dots +\left (\frac{a_{n}}{a_{1}+a_{2}+\dots+a_{n-1}}\right )^k\geq\frac{n}{(n-1)^{k}}. \)
Pentru \( n=3 \ \wedge\ k=\frac{1}{2} \) si \( a_{1}=a^2, \ a_{2}=b^2, \ a_{3}=c^2 \) se obtine inegalitatea propusa, care s-a dovedit a fi gresita. Deci inegalitatea din IMO Compendium e gresita. In schimb aceasta inegalitate este adevarata daca \( k\geq 1 \) (se aplica inegalitatile Power Mean si apoi Cauchy-Schwarz). Multumesc mult pentru contraexemplu.
Feuerbach
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Scriem inegalitatea ca \( \sum\frac{a}{b+c}-\frac{3}{2}\ge \frac{2}{3}\left\(1-\frac{ab+bc+ca}{a^2+b^2+c^2}\right\) \)
Avem \( LHS=\sum\left\(\frac{a}{b+c}-\frac{1}{2}\right\)=\sum\frac{(a-b)+(a-c)}{2(b+c)}=\sum\frac{a-b}{2(b+c)}+\sum\frac{b-a}{2(c+a)}=\sum\frac{(a-b)^2}{2(b+c)(c+a)} \)
si
\( RHS=\sum\frac{(a-b)^2}{3(a^2+b^2+c^2)} \)
Cu acestea inegalitatea devine \( \sum(a-b)^2\left\[\frac{1}{2(b+c)(c+a)}-\frac{1}{3(a^2+b^2+c^2)}\right\]\ge 0 \), adevarat.
Avem \( LHS=\sum\left\(\frac{a}{b+c}-\frac{1}{2}\right\)=\sum\frac{(a-b)+(a-c)}{2(b+c)}=\sum\frac{a-b}{2(b+c)}+\sum\frac{b-a}{2(c+a)}=\sum\frac{(a-b)^2}{2(b+c)(c+a)} \)
si
\( RHS=\sum\frac{(a-b)^2}{3(a^2+b^2+c^2)} \)
Cu acestea inegalitatea devine \( \sum(a-b)^2\left\[\frac{1}{2(b+c)(c+a)}-\frac{1}{3(a^2+b^2+c^2)}\right\]\ge 0 \), adevarat.
Aceasta inegalitate este adevarata deoarece :Mateescu Constantin wrote:
Cu acestea inegalitatea devine \( \sum(a-b)^2\left\[\frac{1}{2(b+c)(c+a)}-\frac{1}{3(a^2+b^2+c^2)}\right\]\ge 0 \), adevarat.
\( 3(a^2 + b^2 + c^2) - 2(a + c)(b + c) = (a + b - c)^2 + 2(a - b)^2 \)
. A snake that slithers on the ground can only dream of flying through the air.