Inegalitate conditionata cu a+b+c=1
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate conditionata cu a+b+c=1
\( \left|\begin{array}{c}
a,\ b,\ c>0\\
a+b+c=1\end{array}\right|\Longrightarrow\frac{a}{\sqrt{b+c}}+\frac{b}{\sqrt{c+a}}+\frac{c}{\sqrt{a+b}}\ge\sqrt{\frac{3}{2}}. \)
Cezar Lupu, lista scurta 2005
a,\ b,\ c>0\\
a+b+c=1\end{array}\right|\Longrightarrow\frac{a}{\sqrt{b+c}}+\frac{b}{\sqrt{c+a}}+\frac{c}{\sqrt{a+b}}\ge\sqrt{\frac{3}{2}}. \)
Cezar Lupu, lista scurta 2005
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Aplicand inegalitatea lui Holder avem :
\( \left( \frac {a}{\sqrt {b + c}} + \frac {b}{\sqrt {c + a}} + \frac {c}{\sqrt {a + b}}\right)^{2}\left( a(b + c) + b(c + a) + c(a + b) \right) \geq (a + b + c)^{3} \)
Deci
\( \sum\frac {a}{\sqrt {b + c}}\geq \sqrt {\frac {\left( \sum a \right)^{3}}{2\sum ab}}\geq \sqrt {\frac {3\left( \sum a \right)^{3}}{2\left( \sum a \right)^{2}}} = \sqrt {\frac {3}{2}\left( a + b + c \right)} \)
\( \left( \frac {a}{\sqrt {b + c}} + \frac {b}{\sqrt {c + a}} + \frac {c}{\sqrt {a + b}}\right)^{2}\left( a(b + c) + b(c + a) + c(a + b) \right) \geq (a + b + c)^{3} \)
Deci
\( \sum\frac {a}{\sqrt {b + c}}\geq \sqrt {\frac {\left( \sum a \right)^{3}}{2\sum ab}}\geq \sqrt {\frac {3\left( \sum a \right)^{3}}{2\left( \sum a \right)^{2}}} = \sqrt {\frac {3}{2}\left( a + b + c \right)} \)
. A snake that slithers on the ground can only dream of flying through the air.
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
\( LHS=\sum\frac{1-(b+c)}{\sqrt{b+c}}=\sum\left\(\frac{1}{\sqrt{b+c}}-\sqrt{b+c}\right\) \)
Sa notam \( x=\sqrt{b+c},\ y=\sqrt{c+a},\ z=\sqrt{a+b} \)
\( \Longrightarrow LHS=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-(x+y+z) \)
Dar \( x^2+y^2+z^2=2 \) \( \Longrightarrow x+y+z\le \sqrt{6}\ (1) \)
Din inegalitatea \( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge \frac{9}{x+y+z} \)
\( \Longrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge \frac{9}{\sqrt{6}}=\frac{3\sqrt{6}}{2} \ (2) \)
Din \( (1) \) si \( (2) \) \( \Longrightarrow LHS\ge \frac{3\sqrt{6}}{2}-sqrt{6}=\sqrt{\frac{3}{2}} \)
Sa notam \( x=\sqrt{b+c},\ y=\sqrt{c+a},\ z=\sqrt{a+b} \)
\( \Longrightarrow LHS=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-(x+y+z) \)
Dar \( x^2+y^2+z^2=2 \) \( \Longrightarrow x+y+z\le \sqrt{6}\ (1) \)
Din inegalitatea \( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge \frac{9}{x+y+z} \)
\( \Longrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge \frac{9}{\sqrt{6}}=\frac{3\sqrt{6}}{2} \ (2) \)
Din \( (1) \) si \( (2) \) \( \Longrightarrow LHS\ge \frac{3\sqrt{6}}{2}-sqrt{6}=\sqrt{\frac{3}{2}} \)
Aplicam AM-GM :
\(
LHS = \sum_{cyc} \frac {x}{\sqrt {y + z}}= 2\sqrt {2}\cdot \sum_{cyc} \frac {x}{2\sqrt {2}\sqrt {y + z}}\ge 2\sqrt {2} \sum_{cyc} \frac {x}{2 + y + z} \ge \sqrt {2} \frac {(x + y + z)^2}{x + y + z + xy + yz + zx}\ge \sqrt{\frac{3}{2}} \)
\(
LHS = \sum_{cyc} \frac {x}{\sqrt {y + z}}= 2\sqrt {2}\cdot \sum_{cyc} \frac {x}{2\sqrt {2}\sqrt {y + z}}\ge 2\sqrt {2} \sum_{cyc} \frac {x}{2 + y + z} \ge \sqrt {2} \frac {(x + y + z)^2}{x + y + z + xy + yz + zx}\ge \sqrt{\frac{3}{2}} \)
. A snake that slithers on the ground can only dream of flying through the air.
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Re: Inegalitate conditionata cu a+b+c=1
Sa observam ca daca\( a\le b\le c\Longrightarrow\frac{1}{\sqrt{b+c}}\le\frac{1}{\sqrt{c+a}}\le\frac{1}{\sqrt{a+b}} \).Claudiu Mindrila wrote:\( a,\ b,\ c>0;\ a+b+c=1\Longrightarrow\sum\frac{a}{\sqrt{b+c}}\ge\sqrt{\frac{3}{2}} \)
Atunci, cu inegalitatea lui Cebisev avem: \( \sum\frac{a}{\sqrt{b+c}}\ge\frac{1}{3}\left(\sum a\right)\left(\sum\frac{1}{\sqrt{1-a}}\right)=\frac{1}{3}\left(\sum\frac{1}{\sqrt{1-a}}\right). \quad (1) \).
Sa consideram acum functia \( f:\left[0,\ 1\right)\longrightarrow\mathbb{R},\: f\left(x\right)=\frac{1}{\sqrt{1-x}} \). Se demonstreaza usor(exercitiu) ca aceasta functie este convexa. Aplicand inegalitatea lui Jensen avem:
\( \frac{f\left(a\right)+f\left(b\right)+f\left(c\right)}{3}\ge f\left(\frac{a+b+c}{3}\right)\Longleftrightarrow f\left(a\right)+f\left(b\right)+f\left(c\right)\ge3f\left(\frac{1}{3}\right)=3\cdot\sqrt{\frac{3}{2}} \quad (2) \).
Din \( (1) \) si \( (2) \) avem concluzia problemei.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
poate daca le pui pozitive merge.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact: