Triunghiuri echivalente

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Triunghiuri echivalente

Post by Marius Mainea »

Laturile opuse ale hexagonului convex ABCDEF sunt paralele doua cate doua. Sa se arate ca ariile triunghiurilor ACE si BDF sunt egale, valoarea lor comuna fiind cel putin jumate din aria hexagonului.
mihai miculita
Pitagora
Posts: 93
Joined: Mon Nov 12, 2007 7:51 pm
Location: Oradea, Romania

Post by mihai miculita »

\( \mbox{Prin varfurile A, B, C, D, E si F ducem dreptele a, b, c, d, e si respectiv f, astfel incat sa avem: } \)
\( a\parallel d\parallel BC\parallel EF; \ \ b\parallel e\parallel AF\parallel f CD; \ \ c\parallel f\parallel AB\parallel DE \ \ \mbox{ si notam apoi cu: } \)
\( \{A_1}=c\cap e; \{C_1\}=a\cap e; \{E_1\}=a\cap c; \{B_1\}=d\cap f; \{D_1\}=b\cap f; \{F_1\}=b\cap d. \)
\( \mbox{Sa observam acum ca patrulaterele: }ABCE_1, CDEA_1, EFAC_1 \mbox{-fiind paralelograme}\Rightarrow \)
\( \Rightarrow S_{ACE}=S_{ACE_1}+S_{CEA_1}+S_{AEC_1}+S_{A_1C_1E_1}=\frac{1}{2}.S_{ABCDEF}+ S_{A_1C_1E_1}\ge \frac{1}{2}.S_{ABCDEF}. \) (1)
\( \mbox{In mod analog se arata ca: } S_{BDE}=\frac{1}{2}.S_{ABCDEF}+ S_{B_1D_1F_1}\ge \frac{1}{2}.S_{ABCDEF}. \) (2)
\( \mbox{Pe baza relatiilor (1) si (2), avem: } S_{ACE}=S_{BDF}\Leftrightarrow S_{A_1C_1E_1}=S_{B_1D_1F_1}. \) (3)
\( \mbox{Avem insa: }\\

A_1C_1=|AF-CD|=D_1F_1; C_1E_1=|BC-EF|=B_1F_1; A_1E_1=|AB-DE|=B_1D_1\Rightarrow S_{A_1C_1E_1}=S_{B_1D_1F_1}.
\)
(3)

O alta proprietate a acestui hexagon o gasiti la topicul: http://mateforum.ro/viewtopic.php?p=13516#13516
Post Reply

Return to “Clasa a IX-a”