Conditionata cu produs

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Conditionata cu produs

Post by Marius Mainea »

Fie \( x,y,z\in (0,\infty) \) astfel incat 3xyz=1. Aartati ca :

\( \frac{3xy^3}{3x^4+y+z}+\frac{3yz^3}{3y^4+z+x}+\frac{3zx^3}{3z^4+x+y}\ge 1 \)

Gh. Ivancev& L.Tutescu
opincariumihai
Thales
Posts: 134
Joined: Sat May 09, 2009 7:45 pm
Location: BRAD

Post by opincariumihai »

Cum \( 3xyz=1 \) obtinem \( \frac{3xy^3}{3x^4+y+z}=\frac{y^3}{x^3+y^2z+yz^2}\geq\frac{y^3}{x^3+y^3+z^3} \) si analoagele care insumate duc la inegalitatea propusa .
Post Reply

Return to “Clasa a IX-a”