Intarirea unei inegalitati de pe mateforum

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
opincariumihai
Thales
Posts: 134
Joined: Sat May 09, 2009 7:45 pm
Location: BRAD

Intarirea unei inegalitati de pe mateforum

Post by opincariumihai »

Fie \( A, B\in M_{2}(\mathbb{R}) \) doua matrice astfel incat \( \det(AB-BA)\geq0 \). Sa se arate ca \( \det(A^{2}+B^{2})\geq(\det A- \det B) ^{2} \).

Mihai Opincariu

Vezi cazul particular de aici.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Folosim relatia :

\( \det(X+Y)=\det X+\tr(XY^{\ast})+\det Y \)

Asadar \( \det (AB-BA)=\det AB-\tr[(AB)(BA)^{\ast}]+\det BA\ge 0 \),

de unde

\( 2\det AB\ge \tr([(AB)(BA)^{\ast}] \) (***)

Pe de alta parte concluzia se scrie :

\( \det A^2+\tr[A^2(B^2)^{\ast}]+\det B^2\ge \det A^2-2\det AB+\det B^2 \) sau

\( 2\det AB+\tr [A^2(B^2)^{\ast}]\ge 0 \)

Insa folosind (***) e suficient sa aratam ca \( \tr[(AB)(BA)^{\ast}]+\tr[A^2(B^2)^{\ast}]\ge 0 \) care este evidenta.
opincariumihai
Thales
Posts: 134
Joined: Sat May 09, 2009 7:45 pm
Location: BRAD

Post by opincariumihai »

Marius Mainea wrote: Insa folosind (***) e suficient sa aratam ca \( \tr[(AB)(BA)^{\ast}]+\tr[A^2(B^2)^{\ast}]\ge 0 \) care este evidenta.
De ce e evidenta?
Sper ca nu va referiti la calcul direct...
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( \tr[(AB)(BA)^{\ast}]+\tr[A^2(B^2)^{\ast}]=\tr[A(BA^{\ast}+AB^{\ast})B^{\ast}]=\tr[A\tr(AB^{\ast})I_2B^{\ast}]=[\tr(AB^{\ast})]^2\ge 0 \)
Post Reply

Return to “Algebra”