Numere prime

Moderator: Filip Chindea

Post Reply
Z
Euclid
Posts: 10
Joined: Tue Apr 21, 2009 7:04 pm

Numere prime

Post by Z »

Sa se arate ca pentru n>3 in intervalul (n!+n,2n!) exista cel putin doua numere prime.
Cristi Popa
Euclid
Posts: 24
Joined: Sat Nov 10, 2007 9:31 pm
Location: Bucuresti / Ramnicu-Valcea

Post by Cristi Popa »

Voi folosi urmatoarele doua teoreme:
Teorema 1. Daca \( n\geq 6 \Rightarrow (\exist)\ p,\ q \) numere prime a.i. \( n<p<q<2n. \)
Teorema 2. Daca \( n\geq 5 \Rightarrow p_{n+3}<2p_n \), unde \( p_n \) este al n - lea numar prim.

Aplicand Teorema 1 (\( n\geq 4 \Rightarrow n! \geq 24 \)), rezulta ca exista doua numere prime \( p,\ q \) a.i. \( n!<p<q<2n! \). Cum numerele \( n!+j,\ j=\overline{2,n} \) sunt compuse, avem doua cazuri:
I) \( n!+1 \) nu este numar prim \( \Rightarrow n!+n<p<q<2n!. \)
II) \( n!+1 \) este numar prim.
\( n\geq 4\Rightarrow n!+1 \geq 25 \Rightarrow (\exist)\ k\geq 10 \) a.i. \( n!+1=p_k. \) Aplicand Teorema 2, obtinem \( n!+1=p_k<p_{k+1}<p_{k+2}<p_{k+3}<2p_k=2n!+2. \) Rezulta ca \( p_{k+1}\geq n!+n+1>n!+n \) si \( p_{k+3}\leq 2n!+1 \Rightarrow p_{k+2}\leq 2n!-1<2n! \Rightarrow n!+n<p_{k+1}<p_{k+2}<2n!. \)
Deci, \( \pi(2n!)-\pi(n!+n)\geq 2. \)

Remarca: O solutie mai rapida se obtine folosind urmatoarea:
Teorema. Daca \( n\geq 9 \Rightarrow \pi(2n)-\pi(n)\geq 3. \)
Post Reply

Return to “Teoria analitica a numerelor”