Fie doua numere pozitive \( a \), \( b \). Se arata usor ca \( (a+b)^4\le \left(a^2+3b^2\right)\left(b^2+3a^2\right). \)
Sa se arate o "intarire" a acesteia : \( (a+b)^4\le \overline {\underline {\left\|\ (a+b)^3\sqrt {2\left(a^2+b^2\right)}\le \left(a^2+3b^2\right)\left(b^2+3a^2\right)\ \right\|}}\ . \)
O inegalitate in doua variabile pozitive.
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
O inegalitate in doua variabile pozitive.
Last edited by Virgil Nicula on Sun Sep 20, 2009 11:33 pm, edited 2 times in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Re: O inegalitate in doua variabile pozitive.
Notam \( \frac{a}{b}=x>0 \) si inegalitatea este echivalenta cuVirgil Nicula wrote: \( \overline {\underline {\left\|\ (a+b)^3\sqrt {2\left(a^2+b^2\right)}\le \left(a^2+3b^2\right)\left(b^2+3a^2\right)\ \right\|}}. \)
\( (x^2+3)^2(1+3x^2)^2-2(x+1)^6(x^1+1)\ge 0 \)
sau
\( (x-1)^2(7x^6+2x^5+25x^4-4x^3+25x^2+2x+7)\ge 0 \)