Sa se rezolve ecuatia :
\( 1!+2!+3!+...+(x+1)!=y^{z+1}\ , \ x,y,z\in \mathbb{N} \)
Ecuatie URSS 1975
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
Ecuatie URSS 1975
. A snake that slithers on the ground can only dream of flying through the air.
-
Theodor Munteanu
- Pitagora
- Posts: 98
- Joined: Tue May 06, 2008 5:46 pm
- Location: Sighetu Marmatiei
Observam ca avem o infinitate de triplete (1,1,n).
Daca \( x \geq 8 \) si \( z\geq 2 \) ecuatia nu are solutii deoarece 1!+2!+...+8!=46233 care se divide doar la 9, iar celalalt membru se divide cel putin la 27 in cazul in care presupunem ca y=3k (altfel evident nu gasim solutii).
Daca luam \( x \leq 7 \) prin incercari observam ca nu are solutii.
Daca \( x \geq 8 \) si z=0 ec are o infinitate de solutii.
Daca \( x \geq 8 \) si z=1 1!+2!+3!+4!=33 deci \( y^2=M5+3 \) imposibil iar 1+2!+3!=9=\( 3^2 \) deci (2,3,1) e o alta solutie a ecuatiei.
Daca \( x \geq 8 \) si \( z\geq 2 \) ecuatia nu are solutii deoarece 1!+2!+...+8!=46233 care se divide doar la 9, iar celalalt membru se divide cel putin la 27 in cazul in care presupunem ca y=3k (altfel evident nu gasim solutii).
Daca luam \( x \leq 7 \) prin incercari observam ca nu are solutii.
Daca \( x \geq 8 \) si z=0 ec are o infinitate de solutii.
Daca \( x \geq 8 \) si z=1 1!+2!+3!+4!=33 deci \( y^2=M5+3 \) imposibil iar 1+2!+3!=9=\( 3^2 \) deci (2,3,1) e o alta solutie a ecuatiei.
Last edited by Theodor Munteanu on Tue Sep 22, 2009 10:43 am, edited 1 time in total.
La inceput a fost numarul. El este stapanul universului.
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti