Fie \( X \) o varietate proiectiva si \( E \) un fascicul local liber, indecompozabil, generat de sectiunile globale. Notam \( n=\dim(X) \) si \( r=rk(E) \).
Daca \( r>n \), atunci exista \( 0\to F\to E \) subfibrat trivial de rang \( r-n \) (adica un subfascicul local liber izomorf cu \( O_X^{r-n} \) a.i. \( E/F \) local liber).
subfibrat trivial intr-un fibrat de rang mare
Moderator: Mihai Fulger
- Dragos Fratila
- Newton
- Posts: 313
- Joined: Thu Oct 04, 2007 10:04 pm
subfibrat trivial intr-un fibrat de rang mare
"Greu la deal cu boii mici..."
-
Victor Vuletescu
- Euclid
- Posts: 21
- Joined: Fri Feb 06, 2009 9:44 am
- Dragos Fratila
- Newton
- Posts: 313
- Joined: Thu Oct 04, 2007 10:04 pm
-
Victor Vuletescu
- Euclid
- Posts: 21
- Joined: Fri Feb 06, 2009 9:44 am